
REPORT NO: NAWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS
ELIMINATION ALGORITHM

Peter R. Turner, Ph.D.
Mathematics Department
U S Naval Academy
Annapolis, MD 21402

5 AUGUST 1995

Prepared for
OFFICE OF NAVAL RESEARCH
800 N. Quincy Street
Arlington, VA 22217

FINAL REPORT
Period Covering June 1995 to August 1995

Approved for Public Release; Distribution is Unlimited. 0T>

DTXC QUALITY INSPECTED 1

DISCLAIMS! NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

NAWCADPAX-96-196-TR

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial
products herein do not constitute an endorsement by the Government nor do they convey or
imply the license or right to use such products.

Reviewed
Author/COTR

Reviewed By:.
(Qjk

LEVEL III Manager

= 7/l/tt

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

f„r thk million of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
ng the^datä^eded and competing1nd7e^,e™ng ^collection of infection. Send comments regarding this^burden estimate or '"V other aspect of this
^ndudina suMwions f™ reducing this burden, to Washington Headquarters Services. Directorate.for' l"«o'm«^n Opea^ons and Reports,1215 Jefferson

Public reporting burden
gathering and maintaining t . _

ffv^ffgl^Arg
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

5 August 1995
3. REPORT TYPE AND DATES COVERED
June 1995 to August 1995

4. TITLE AND SUBTITLE „-, J .,
,-. A Simplified Fraction-Free Integer Gauss Elimination
Algorithm

6. AUTHOR(S)

Peter R. Turner, Ph.D.

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Air Warfare Center
Aircraft Division Warminster
Code 455100R07
Warminster, PA 18974-0591

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

NAWCADPAX--96-196-TR

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Mathematics Department
U S Naval Academy
Annapolis, MD 21402

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for Public Release; Distribution is Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Max/mom 200 words) . .
This paper presents a new version of Gauss elimination for integer arithmetic.

This new algorithm allows fraction-free integer computation without requiring any
calls to a greatest common divisor routine. It does however keep the growth in the
integer dynamic range to a minimum. The algorithm is based on a careful comparison
of the divisionless integer GE and the "normal" algorithm using divisions within a
floating-point or real arithmetic setting. From this analysis, we identify common
factors which are necessarily present throughout the active part of the matrix.
These can then be removed by exact integer division. A further consequence of this
analysis is that the diagonal entries of the final upper triangular factor are
precisely the determinants of the principal minors of the original matrix. In a
parallel processing environment, the additional cost of these integer division is
minimized since, at each stage, the whole active array is being divided by the same
integer.

14. SUBJECT TERMS

Fraction-free, Floating-point, Additional cost.

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

27
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NAWCADPAX--96-196-TR

Table of Contents

A
1.

astract
Introduction

1
1

2. The Basic Algorithms 2

2.1. Problem statement and notation 2

2.2. The ijk-form 2

2.3. Applications 3

3. Gauss Elimination Over the Integers 5

3.1. Division-free Gauss elimination 6

3.2. Growth in dynamic range 6

3.3. Reducing the range growth 7

4. The New Algorithm

4.1. Comparison of real and integer Gauss

8

elimination 9

4.2. A New fraction-free GE algorithm 10

4.3. Applications 14

5. Complexity of the Fraction-Free Algorithm 15

5.1. Long integer arithmetic 16

5.2. Computing with the rationals 17

5.3. General rings 19

6. Conclusions 19

References 20

11

NAWCADPAX--96-196-TR

A Simplified Fraction-Free Integer Gauss Elimination Algorithm

PETER R TURNER

MATHEMATICS DEPARTMENT, U S NAVAL ACADEMY, ANNAPOLIS, MD 21402

ABSTRACT This paper presents a new version of Gauss elimination for integer
arithmetic. This new algorithm allows fraction-free integer computation without
requiring any calls to a greatest common divisor routine. It does however keep the
growth in the integer dynamic range to a minimum. The algorithm is based on a
careful comparison of the divisionless integer GE and the "normal" algorithm using
divisions within a floating-point or real arithmetic setting. From this analysis, we
identify common factors which are necessarily present throughout the active part
of the matrix. These can then be removed by exact integer division. A further
consequence of this analysis is that the diagonal entries of the final upper triangular
factor are precisely the determinants of the principal minors of the original matrix.
In a parallel processing environment, the additional cost of these integer divisions is
minimized since, at each stage, the whole active array is being divided by the same
integer.

1. INTRODUCTION

In some form Gauss elimination, or GE as we shall often abbreviate it here, is probably
the most widely used single computational tool in scientific computing for a very wide
range of underlying problems. These include solution of partial differential equations
linear programming and least squares approximation in its various guises such as signal
processing and linear regression. The basic problems for which it is used are the solution
of linear systems of equations (including obtaining the solution space for underdetermmed
svstems), computation of matrix determinants, determination of matrix rank or detection
of singularity. Gauss elimination is usually to be found as a major topic in texts on
linear algebra (where the emphasis is on its theoretical basis), numerical analysis (with an
emphasis on its practical implementation, paying attention to questions of roundoff error
and numerical stability), parallel and vector computing (as an important illustration of the
potential power of parallel computers). See [l], [3], [5], [10], [11] for examples. However
few of these discuss in any detail the interplay between these different perspectives. It
is precisely this interplay which leads to the improved integer GE algorithm which is the

subject of this paper. . .
We begin with a brief review of the basic GE algorithm and some variations of this.

Section 2 also contains a brief review of the main applications and of the complexity
analysis. Section 3 introduces integer GE. The requirements of integer arithmetic raises
some different issues. We describe first the division-free form of the algorithm and then
the questions raised by this - most notably, the growth of the dynamic range that is
needed. Some of these issues were previously discussed for the specific context of residue

number systems in [6], [7], [16].
In Section 4. an improved fraction-free integer GE algorithm is developed from a

comparison of the matrix entries in the divisionless algorithm and those for the usual
GE algorithm. A short discussion of the use of greatest common divisors to reduce the
dynamic range growth is also included before the new algorithm is presented. Its use
in the various standard applications is also described. Section 5 returns to the question
of algorithm complexity and includes some consideration of the demands of (potentially)

NAWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 2

long integer wordlength arithmetic. A brief comparison with the use of GE with rational
arithmetic is included. The paper concludes with a very short sect,on on extensions of
the algorithms presented here to other algebraic settings.

2. THE BASIC ALGORITHMS

2 1 Problem statement and notation. Except where specifically stated we shall
consider a square n x n matrix A although some of the problems and solutions are sim-
ilarly valid for rectangular matrices. Elements of the matrix A will be denoted b> atj.
Its determinant is denoted det,4 and its rank by v(A). The three basic problems we
are concerned with here are the solution of systems of equations, computing det,4 and
determining r (A). For definitions of any of these, see a standard text such as [lj.

In the case of systems of equations, we use the notation

,4x = b

and the elements of the unknown and right-hand side vectors are denoted xu b{.
The underlying principle of GE is that multiples of the first equation (or row of the

matrix) are subtracted from all subsequent equations (rows) to eliminate the first unknown
(element) from each of these. The process is then repeated to eliminate entries below the
diagonal of each column in turn. The system of equations is then solved by substitution
in the resulting triangular system. Alternatively the determinant of the original matrix is
given by the product of the diagonal entries in the resulting matrix. The rank is given by
counting the number of nonzero elements on the diagonal of the final array. In the case
of solving a system of equations, whatever operations are performed on the matrix must
also be performed on the right-hand side.

Of course, these statements are oversimplifications of the true situation but they con-
tain the essence of the approach. In the rest of this section, we present the general version
of this simple GE procedure and discuss some of the difficulties that can arise.

2.2. The ijk-form. The "ijk-fornr of GE is just the general n x n version of the

algorithm outlined above.

Algorithm 1 Basic GE ijk form

Input nxn matrix A (and right-hand side b if solving a system)

Compute
for i = 1 to n — 1

for j = i + 1 to 77
77? := dji/au

an := 0
bj := bj - mbi (if solving a system)
for k = i + 1 to 77

Ojfe := Oj* - 7770.,/,-

Output (modified) matrix A (and b if solving a system)

Pivoting is the name given to altering the order in which the rows are used in the
GE algorithm. The simplest cause for the need for pivoting is the occurrence of a 0
in the appropriate diagonal position so that Algorithm 1 breaks down. In the floating-
point environment an almost equally difficult situation is created by a very small diagonal

NAWC ADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 3

entry which mav be just the result of roundoff error in a quantity which would be 0 if
exact arithmetic were being used. Such a pivot element can result in large errors in the
computed solution. The usual pivoting strategy is partial pivoting in which the current
t-th column is searched for its element of largest magnitude on or below the diagonal. The
row in which this occurs is then interchanged with the 7-th row before the elimination

COnForU manv purposes, it is desirable to make better use of the work involved in GE,
By storing the multipliers used, we obtain the LU factorization of the original matrix A.
That is we find a lower triangular factor L and an upper triangular one U such that

A = LU

or, in the case of pivoting, L, U are factors of a permuted version of the matrix A:

PA = LU

For this form of the algorithm, the factors L and U are stored in the same locations as the
original matrix A. The lower factor L has unit diagonal entries and so these need not be
stored explicitly. The principal advantages of the LU factorization lie in the fact that if
multiple svstems are to be solved with the same coefficient matrix then the factorization
can be done just once and each system solved using forward and back substitution loops.
This is then much cheaper computationally than, for example, inverting the matrix.

For simplicity in the descriptions of the various integer algorithms in the remainder
of this paper, we shall restrict our attention to the basic GE algorithm. The inclusion of
pivoting is straightforward — though it is not obvious what constitutes a good pivoting

strategy for integer GE. .
There are several variations on the basic ijfc-form of GE which have merits for different

computing environments. The rjfc-form in Algorithm 1 is well-suited to a conventional
serial computer architecture with matrices stored by rows. For other storage schemes
or processor architectures, alternatives may be preferred. A detailed discussion of these
aspects is included in [11]. These variations can take advantage of processors which are
designed, for example, for efficient performance of the saxpy's of [5] or of scalar products.

2.3. Applications.

Solving linear systems. The most frequent application of GE and LU factorization

is to the solution of a linear system
,4x = b (!)

Then Algorithm 1 results in an equivalent upper triangular system

■ L'x = b (2)

whose solution is the same as that of (1). This system is then solved using back substitu-

lion.

Algorithm 2 Back substitution

Input n x n upper triangular matrix U, n-vector b
Initialize solution x := 0
Compute

NAWCADPAX--96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM

for i = n dovnito 1
for j = i + 1 to n

bi := bi — UijXj

Xi := bi/uu

Output solution x

Remark 1. Note that b has been used (in place ofb) to denote the right hand side of

(2) in this algorithm.

This version of back substitution has been arranged in such a way that the outer loop
results in obtaining one further component of the solution each time. Again there are
variations which are better suited to particular architectures.

The computational complexity of floating-point algorithms is often measured by the
number of floating-point arithmetic operations that are required. Traditionally, the rela-
tive efficiency of algorithms was measured by counting multiplications and divisions and
neglecting addition and subtraction operations. For modern processors the time required
for floating-point multiplication is not much greater than that for addition and so it is
sensible to consider all arithmetic operations. Division still costs substantially more and
any elementary function evaluations are typically yet more expensive. The floating-point
operation counts for GE are well-known. They can be found in almost any standard text
on numerical analysis or computational linear algebra such as [3] or [5].

TABLE 1 Arithmetic operation counts for GE solution of Ax = b.

Operation Forward elimination Back substitution TOTAL
ToT= An(y-l) Mn-1) 4n(n-l)(2» + 5)
x U(n2-l) Jn(n-l) |n(n - 1) (2n + 5)
/ |n(n-l) n \n(n + \)

If multiple systems with the same coefficient matrix are to be solved then the overall
operation count for GE is obtained by multiplying these totals by the number of systems.
In particular the inversion of the matrix A would therefore result in multiplying'all these
totals bv n so that matrix inversion by GE is an 0(n4) operation. The corresponding
table of operation counts for LU factorization makes it easy to see the practical advantage
of using the LU factorization whenever multiple systems are to be solved.

Determinant evaluation. Whether we use GE or LU, the evaluation of det.4 is
extremelv simple once the elimination phase is complete. (We are taking no account of
any questions of error analysis or stability at this stage.) In the absence of pivoting the
determinant is simply the product of the diagonal elements of U.

Rank and singularity detection. Again, neglecting any problems created by
roundoff errors or ill-conditioning in the matrix, once GE with pivoting has been com-
pleted, singularity is detected simply by seeking a 0 entry in a pivot position. In fact it
is sufficient to examine o„„ since, if any pivot element is zero, then necessarily on„ - 0.
Again note we are assuming both pivoting and exact arithmetic. In practice, for floating-
point arithmetic at least, this is not sufficient and more care must be taken to test for
near-singularity. Extending our ideal world analysis, by counting the number of zero
pivots we obtain the rank-deficiency of the matrix. Equivalents the number of nonzero
pivots yields the rank of .4. This is a much more optimistic claim than even the singularity

NAWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 5

statement. Within a computer algebra system or with exact arithmetic such statements

QI>P vsiid
In the domain of real numerical computation, the question of rank determination is

more difficult. The effect of roundoff error on GE has been thoroughly analysed. So me
ofthat analysis is summarized in Section 2.5. Packages such as MATLAB1 (see [9] for
example) include rank as a function in their computational library and use a carefully
computed tolerance dependent on parameters of the computer system to determine the
"true" rank of the original matrix from its Singular Value Decomposition (SVD) [5]. Such

aspects are not the focus of this paper.

The solution space for underdetermined systems. In the case of underdeter-
mined systems of equations, whether this is the result of having fewer equations than
unknowns or of rank deficiency in the matrix, a set of vectors spanning the solution space
is easv to obtain from the LU factorization of the matrix.

The backward substitution must be performed the same number of times as the rank
deficiency Thus if the n x n matrix has rank r, we solve the smaller system n-r times
each time with r of the unknowns specified. To guarantee linearly independent solutions
it suffices to use the standard basis vectors elf e2,..., en_r in turn to specify the va ues of
x^.x^,...^. That is, we first set (x^.x^ xn) = W'-f)«* solve *J[
the remaining unknowns. The process is repeated for (xr+i, xr-r2, ...,xn) - {U,L,U,... ,v)
and so on until we have used (xr+i,Xr+2,-•■ >xn) = (0,...,0,1).

The algorithms are simple extensions of those outlined earlier. Similar basis vectors
could be used in more abstract settings with symbolic computer algebra systems.

3. GAUSS ELIMINATION OVER THE INTEGERS

For computation over the integers, it is necessary to make changes to the basic GE algo-
rithms described in Section 2. The most obvious cause is the fact that the integers are not
closed under division. This has the side effect that the magnitudes of integers generated
during the computation can grow rapidly. The range of integer values required or available
is known as the dynamic range. Overflowing the integer range in binary integer arithmetic
often results in the phenomenon known as "integer wraparound" (see [3] Chapter 1, tor
example) which is the effect of the "clock" arithmetic modulo 2A where A is the integer
vvordlength in bits. Further complications that arise out of integer arithmetic (however it
is performed) include choosing a good pivoting strategy

In a Computer Algebra System (CAS) such as Maple2 [2] or Mathematics3 [20 . some
of these problems are avoided at the expense of computational speed since exact arithmetic
with very long integers can be performed in software. However such computation becomes
very slow when the arithmetic wordlength gets long - and the rate of growth of the
dynamic range can be very rapid.

' One wav of overcoming some of the difficulties is the Use of alternative representation
and arithmetic formats for the integers. The residue number systems RNS are well-suited
to some of these tasks. In such a system, an integer is represented by its residues modulo a
number of different prime numbers. The advantage here is that the growth of the dynamic
range is achieved bv extending the set of basis primes being used. RNS arithmetic has
a natural short wordlength parallelism which avoids the slowdown caused by very long

1 MATLAB is a registered trademark of The Math Works, luc
2 Maple is a registered trademark of Maple Waterloo Software, luc.
3Mathematica is a registered trademark of Wolfram Research, luc.

NAWC ADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 6

wordlength arithmetic. However it brings with it other difficulties which are less easily
resolved Even if one integer divides another and both are within the dynamic range of
the system, there is no simple division algorithm which returns this result; range checking
is (at best) verv difficult; comparison is not an RNS operation. RNS arithmetic systems
and processors have been extensively studied; see [13] or [15] for example.

In this section, we discuss the implementation and use of GE using integer arithmetic.
Our primary focus will be on binary integer arithmetic. The use of RNS arithmetic
within the specific context of adaptive beamforming was discussed in [6], [16]. The latter
reference addresses the issues of dynamic range and complexity in this setting.

3 1 Division-free Gauss elimination. The simplest way of modifying GE to inte-
ger arithmetic is to eliminate the divisions by performing "cross-multiplications" between
the rows of the matrix. This is the form which generates the greatest, rate of growth in

ab
the dynamic range. This corresponds to the transformation of 2 x 2 matrices ^ ß rf j to

a b 1 instead of ° t , \ ■ This is achieved by multiplying the second
0 ad-be 0 d-b(c/a) J „,..., ~~ ,

row by a, and subtracting from it c times the first one. The overall divisionless GE algo-
rithm consists of repeating this for all the appropriate submatrices as m the basic form

of the algorithm in Section 2.

Algorithm 3 Division-free GE ijk form

Input nxn integer matrix A (and right-hand side b if solving a system)

Compute
for i = 1 to n - 1

for j — i'■ + 1 to n
bj — a«bj - ajibi (if solving a system)
for fc = ? + 1 to n

cijk := auajk - ajiaik
aji := 0

Output (modified) matrix A (and b if solving a system)
Depending on the individual task being performed, this elimination algorithm would

then be followed with the appropriate final stages — a modified back substitution for
solving a system or other modifications of the algorithms of Section 2 for rank determi-
nation or determinant calculation. These are discussed in Section 4 in the context of the

new version of the algorithm.
It is easy to see from the 2x2 situation that the matrix elements are likely to grow

rapidly during this process. By way of contrast Wilkinson [19] establishes that there is
no growth in the dynamic range if partial pivoting is used with Algorithm 1.

3.2. Growth in dynamic range. The question of the range growth in divisionless
GE was addressed in some detail in [6], [7]. [16] in order to analyse the possibilities for
RNS arithmetic within the context of adaptive beamforming. In this section we begin by
summarizing these results for general integer arithmetic. In order to develop satisfactory
algorithms for the various underlying problems, it is also useful to examine the relation
between the matrix entries arising from the divisionless algorithm and the corresponding
algorithm using division. This question is addressed later in this subsection.

NAWCADPAX--96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM

To get a feel for the potential range growth in the divisionless GE1 algorithm, consider
first jusfa 2x2 matrix with integer entries in the range \-M,M)- ^ binary integer
orientations have a range of the form [-MM - l]; but for the present purpose we
remaTuSe imt!al range doe, not necessarily match the available dynamic range. The

symmetric range simplifies the analysis of the growth.

The transformation of the 2 x 2 matrix
b
d

to ad — be
results in an

* A i,£f nf2 M2\ If M = 2K - 1, this implies that the dynamic range element ad-be € [-ZM ,m j. u i\i ± *, r
required has increased from a required minimum wordlength of A + 1 bits to 2K + 2
b*s This same exponential rate of growth is possible at every stage of the outer loop of

MgT^e initial required wordlength is (approximately) doubled .V - 1 tim«^during
the divisionless GE elimination for an N x .V matrix. The final wordlength needed is
therefore around 2^ (K + 1). It is easy to see that this would very quickly exhaust any

normally available dynamic range. . . „ ,
For example, if K were just 3 so that the initial integer range is restricted to just [- ,7]

with N = 6, the final dvnamic range would need a wordlength of at least 2x4- 128
bits which is already double the length of any commonly found built-in integer format^
Clearly for a more realistic range for the initial data and larger matnx dimensions this
growth would verv quickly exceed all plausible ranges even for software implementation.
* In the case of" complex integer arithmetic as in [7] the growth is even slightlymore
rapid than the above analysis suggests and, perhaps more importantly, the worst case
growth is achieved in realistic examples. Clearly it becomes necessary to find ways of
restricting this growth. The standard approach is to search for greatest common divisors
and to factor them out of subsequent computation.

3.3. Reducing the range growth. In the next section, we consider how to take
full advantage of common factors which result from the divisionless algorithm. In this
section we look first at the simplest range reduction technique resulting from the removal

of unnecessary factors.

Greatest common divisors. The simplest approach is just to divide out any com-
mon factors in the "cross-multiplication" operations which are at the heart of the divi-
sionless GE algorithm. Again, this idea is easily understood by considering the 2 x 2

elimination beginning with A=\\ \ ■ Suppose that a.e have a common factor p

so that there exist integers a,7 sich that a = pa, e = p-. Then the usual divisionless
f a b

transformation to 0 ad.-be

from a times the second to yield

can be replaced by subtracting 7 times the first row

since ac-a-y = ap-, - paf = 0. a 0

This suggests that it is desirable to find the greatest common diwor&d(a, c), of a e
before proceeding with the elimination. This same principle can be applied at each step
of the process and it can be applied in more general settings than just mteger an hme 1.
For example, this idea is incorporated into the polynomial fraction-free Gauss elimination

fU11Ft^in5nttion may be achievable using the gcd in the (perhaps unlikely) event
that a complete row of the matrix at some stage has a nontrivial common factor. This too
can be divided out. reducing the range growth in subsequent stages of the elimination.

NAWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 8

Of course if the goal is to obtain detA then a record of (the product of) these factors
must be kept to multiply the final result. Finding the gcd of a complete row of a matrix
of amthing more than very small dimension may be at a price which does not justify the
savings. The simplest technique for finding gcd(a,c) is the Euclidean algorithm which is

easily implemented as follows:

Algorithm 4 Euclidean algorithm for integer gcd

Input Positive integers c<a
Initialize q := c, tmpc := a
Repeat

tmpa := tmpc; tmpc := q
q := tmpa mod tmpc

until q := 0
Output gcd(a, c) is tmpc

This can be used within the following modified divisionless GE algorithm.

Fraction-free algorithm. A fraction-free version of GE can be defined using the
gcd algorithm above to reduce the range growth effect. The resulting algorithm needs no
divisions beyond the removal of known factors.

Algorithm 5 Fraction-free GE using greatest common divisors ijk form

Input nxn integer matrix A (and right-hand side b if solving a system)

Compute
for i = 1 to n - 1

for j = i + 1 to n
p := gcd(oü,a.ji)
a := aa/p; 7 := «ty/p
bj .— abj - 76; (if solving a system)
for k = i 4- 1 to n

üjk := cto,jk - 7a«fc

a.ji := 0
Output (modified) matrix A (and b if solving a system)

Since we have no advance knowledge of the existence of nontrivial factors (that is
p > 1) this algorithm does not obviously moderate the worst case range growth of the
above analvsis. In fact the comparative analysis of the next section suggests that it would
have some beneficial effect — but at considerably greater cost than is necessary.

Using the gcd of complete rows can be incorporated into the algorithm at any stage.
Potentially such factors could exist in any row of the active matrix and such factors could
be sought in everv row at every stage of the elimination. The algorithmic changes are
straightforward but the cost is likely to be too high and so we do not elucidate further
here — except for one very important special situation which does arise as a result of the

elimination process itself.

4. THE NEW ALGORITHM

The development of the new fraction-free integer GE algorithm is based on a comparison
between the matrix entries which result with or without divisions. The most important
result of this analvsis is that certain common factors are found to be generated by the

NAWCADPAX-96-196-TR

A SIMPLIFIED FRACAS-FREE INTEGER GAUSS ELIMINATION ALGORITHM 9

, * * ^;^+oKi« «•«■ These can be removed using exact integer
JÄt'-SÄSÄE. -Teve, which may b. consider*, inherent

in the problem.

A 1 Comparison of real and integer Gauss elimination. In this subsection,

JStSr^-ta. ^simplicity here ..« -*J-* ^TT
and shall «ssome that «he algorithm does not break down due to a zero prvot

Following convention, we denote by av the elements of the ongmal mat™. All refer
»nee will be to the simplest fafc-form of GE described by Algorithm 1. By the >-th stage
"«re a^itlt ml «hi on«ermos« loop for the valne i which ,^ —»°
below the diagonal in the i-th colnm». The entries resalt.ng from the .-th GE wrthd»,
7Z are denoted by „«. The corresponding entries for .he divisionless form Algonth „ 3

will be denoted by if fa, *>■<)■ The "final" valnes in the «wo algorithms «re therefore

given bv «'!-". l-jr" ü = 0,l,...,.V-l;*>3)»h««i. ='»=»"•
To see the relations between the entries eg and ««, we look first at th« transform.fon

-i r . >, .

of
o b
c d

to
a b
0 ad- be

a b
0 d-b{c/a)

It is easy to see that, as opposed to
— ci- j

in the current notation,

&£> = ad - be = a \d - b{c/a)} = a^aty

and that the corresponding relation would hold for all other matrix entries resulting from

the first stage. That is »r, l%\
$ = <.„<.<? (2<j\fc<A') ^

In particular we see that &> is the determinant of the top-left 2 x 2 submatrix It will
be com-enSttod'ote thifby *. In general, we shall denote by * the determinant of

theTTntt ^agetr «on. ,s dually the same as this first stage operating
on ^bonom-rfght (.V- 1) * (.V- 1) sc.uare submatnx - the "active matrix . It o lo

that there is a further ««ling of all affected entries by the pnot element b22 . Thus.

dCdUCethat ,#=*„« (3<J.k<N) W

and continuing in this way we obtain the general relation:

b$ = aul%-€1}$ (»■<;,***> (5)

NAWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 10

Each "final" divisionless entrv is its corresponding value from Algorithm 1 scaled by
the product of all the final diagonal entries of the divisiorüess algorithm above it.

We note immediately that this analysis suggests that entries in the active matrix have
common factors which have been included by the algorithm itself. These represent one
obvious way of reducing the range growth and altering the algorithm. This modification,
which is presented below, will result in each diagonal element being the determinant 4
of the principal minor of the appropriate dimension.

4.2. A new fraction-free GE algorithm. From (4) it follows, in particular, that

ftg> = anb^a™ = au (aua$) og} = and»

where, we recall, d3 = dna^a™ is the determinant of the principal 3 x 3 minor. We

remark that d3 is an integer. It follows that ftg> has the factor au. Using this same

reasoning, we see that b{2 has a factor on for every j,k > 3 since each such element is
on times the (integer) determinant of a 3 x 3 minor. This known factor can easily be
removed prior to the next stage of the elimination.

Similar factors are introduced into the active matrix at each subsequent stage. These
too can be divided out. The factors introduced at the subsequent stages of the elimination
are the (modified) diagonal entries. Since these are known factors, there is no need for

any calls to a gcd function.
The removal of these factors has an obvious effect on the range growth in subsequent

stages of the elimination even though its effect on the worst case analysis is unclear. The
growth in the required wordlength could be computed "on-the-fly" in order to take full

advantage of this saving.
The division by these factors is incorporated into Algorithm 6 below. We observe that

this algorithm, like Algorithm 5, is fraction-free but not division-free. All divisions that
are performed are integer operations with exact integer results.

Algorithm 6 Fraction-free GE ijk form

Input nxn integer matrix A (and right-hand side b if solving a system)

Compute
for ? = 1 to 77 - 1

for j = i + 1 to n
bj := aabj - a^b, (if solving a system)
for k = i + 1 to n

a-jk ■= auüjk - ajiaik
a,ji := 0

if i > 2 then (removal of common factors)
for j = i + 1 to n
bj := bj /a,_!,,_ i (if solving a system)

for k = ? + 1 to 7?
djk ■= Ojk/0-i-l,i-l

Output (modified) matrix A (and b if solving a system)

To gain some insight into the saving that results from this algorithm, consider just the
final value of aNy. In the division-free Algorithm 3, using (5) for i = X - 1, we have:

"K.X - all',22 ' ' ' °.\'- 1„V- 1°.VA'

N AWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 11

which in turn yields

4V> = anaW.-aS.^frH"-«-.}
, f_N-2L(DlA'"3 ...j.CJV-3) A = d# {a^r2 3

22
A'-3) \
V'-2,A'-2 J

The corresponding final value for Algorithm 6 is just

a AW = det.4 = du

(6)

(7)

which is tvpically verv much smaller since these additional factors have been removed
during the modified elimination. Indeed it turns out for this Algorithm 6 that at the

conclusion of the elimination we have

an = d{. (8)

Example 1. Comparison of Algorithms 3 and 6 for a 4 x 4 matrix. The results of exact
arithmetic in Algorithm 1 are also included for comparison and ülustration.

Let

A =

8 7 4 1
4 6 7 3
6 3 4 6
4 5 8 2

Algorithm 1 yields the following sequence of modified matrices:

8 7 4 1
0 5/2 5 5/2
0 -9/4 1 21/4
0 3/2 6 3/2

8 7 4 1
0 5/2 5 5/2
0 0 11/2 15/2
0 0 3 0

8 7
0 5/2
0 0
0 0

4
5

11/2
0

1
5/2
15/2

-45/11

from which we may deduce that detA = (8)(5/2)(ll/2)(-45/ll) = -450.
The division-free Algorithm 3 gives:

8 7
0 20
0 -18
0 12

4 1
40 20
8 42

48 12

8 7 4 1 8 4
0 20 40 20 0 20 40

0 0 880 1200 0 0 880

0 0 480 0 0 0 0

1
20

1200
-576000

which shows the very rapid growth which is possible with this algorithm.
The fraction-free Algorithm 6 also gives

r 8 7 4 1 " 8 7 4 1

0 20 40 20 0 20 40 20

0 -18 8 42 0 0 880 1200

0 12 48 12 0 0 480 0

of this matrix is then divided by the common h

"87 4 1
0 20 40 20
0 0 110 150
0 D 60 0

NAWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM
12

which in turn gives
7

20
0
0

4
40
110
0

1
20
150

-9000

The active matrix is now just the bottom-right element which needs to be divided by the

"common factor" 20 to yield:

8 7 4 1
0 20 40 20
0 0 110 150
0 0 0 -450

The final values of the diagonal entries can easily be seen (by comparison with the partial
products of the diagonal of the final upper triangle generated by Algorithm, 1) to be the
determinants of the appropriate principal minors, as predicted by (/) and (8)

Although there has been some growth in the magnitudes of the matrix elements it
has been kept in much better check. This growth is no greater than that which must be
accommodated if the determinant of the original matrix is to be computed. The whole
of this computation could have been achieved using standard 16-bit integer arithmetic -
even including the temporary values. The division-free algorithm in this case requires at
least 20 bits even though the original matrix has integer elements bounded by 8^

The benefits in terms of range growth derived from using Algorithm 6 in the above
example would be essentially matched by using Algorithm 5 in this case but the latter
algorithm would also require 6 gcd operations. For Algorithm 6 the factors to be removed
are known and automatically stored as part of the matrix. The sequence of matrices

generated by Algorithm 5 for this example is

8 7 4 1
0 5 10 5
0 -9 4 21
0 3 12 3

8 7 4 1
0 5 10 5
0 0 110 150
0 0 30 0

8 7 4 1
0 5 10 5
0 0 110 150
0 0 0 -450

We should observe however that it is not generally the case that Algorithm 5 yields
ov v = dN nor that it restricts the growth in the dynamic range as effective^ as this.
Note that the original matrix has a common factor of 2 throughout its first column.

Itemoval of common factors from rows of the active matrix for the above example

would yield

8 7 4 1
0 12 1
0 -9 4 21
0 14 1

8 7 4 1
0 12 1
0 0 11 15
0 0 10

8 7 4 1
0 12 1
0 0 11 15
0 0 0 -15

which clearlv has a greatly beneficial effect on the dynamic range - but at a confideab e
cost There are 22 gcd operations required in order to achieve this saving. If the det-4 is
required it is not a simple matter to recover it from the resulting upper tnangu ar factor
even with a knowledge of the factors which have been removed. If a linear system were
to be solved, the number of gcd operations increases yet further wrth no guarantee of

retaining the savings seen here.

NAWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM
13

It is informat
this first one.

ive to consider a second example which is just a column permutation of

Example 2. We repeat much of Example 1 for the matrix

A-

7 4 18
6 7 3 4
3 4 6 6
5 8 2 4

which is permuted so that there is no convenient common factor in the first coJurnn.

The division-free Algorithm 3 gives:

7 4 18
0 25 15 -20
0 16 39 18
0 36 9 -12

7 4 1 8
0 25 15 -20
0 0 735 770
0 0 -315 420

7 4 1 8
0 25 15 -20
0 0 735 770
0 0 0 551250

which again shows the expected very rapid growth.
The corresponding sequence of matrices generated by the fraction-free Algorithm 6 >

7 4 18
0 25 15 -20
0 16 39 18
0 36 9 -12

7 4 1 8
0 25 15 -20
0 0 105 110
0 0 -45 60

7 4 1 8
0 25 15 -20
0 0 105 110
0 0 0 450

in which we see not only that the final value of a44 is the determinant of the original
matrix but that this matrix is positive definite since all its principal minors have positive

^InTnistie using Algorithm 5 so that common factors are removed form the multipli-

ers, we get

7 4 18
0 25 15 -20
0 16 39 18
0 36 9 -12

7 4 18
0 25 15 -20
0 0 735 770
0 0 -315 420

7 4
0 25
0 0
0 0

1
15

735
0

8
-20
770

15750

by "removal-' of the common factor 35 from 735 and -315 in the multipliers used for the
it step. Clearly this time the range reduction achieved by Algorithm o is much inferior

to that of the new algorithm.
Removal of common factors from rows of the active matrix at every stage jield,

7 4 18
0 5 3-4
0 16 39 18
0 12 3 -4

7 4 18
0 5 3-4
0 0 21 22
0 0-34

7 4 18
0 5 3 -4
0 0 21 22
0 0 0 150

The beneficial effect on the dynamic range is again apparent but the disadvantages noted

after Example 1 remain.

NAWCADPAX-96- 196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 14

4 3 Applications. In this section, we describe the effect of the modified fraction-free
GE Algorithm 6 on the solution of the various underlying problems. From the observations
in theLt section, it is plain that the evaluation of det A is particularly simple, provided

only that no zero pivots arise during the computation.

Linear systems. For the solution of a (nonsingular) linear system using Algorithm
6, there is of course no guarantee that the solution vector has only integer components^
I the svstem is known (because of the context, perhaps) to have an -teger - ution
then this can be computed by applying the conventional back substitution Algonthm,
or Algorithm 8, for example) in which case the divisions will again have integer^resuh^
Otherwise the solution can be expressed as fractions using rational anthmeUc with the

obvious modifications of Algorithm 2.

Example 3. Consider the coefficient matrix of Example 1 with the original right-hand

side vector [45,30,40,30]T.

Algorithm 6 would generate the augmented matrix

8 7 4 1 45

0 20 40 20 60
0 0 110 150 260

0 0 0 -450 -450

from which we obtain the integer solutions as xA = (-450)/(-450) = l,sothatx3 = [260-
150(1)1/110 = 1. Then x2 = [60 - 40(1) - 20(1)] /20 = 0 and x, = (4o - 4 - l)/8 - 5

If we did not know in advance that the original system has an integer solution vector,
rational arithmetic would be used to generate the equivalent results.

Determinant. We have already seen that Algorithm 6 delivers det A automatically
as the final value of aNN. Furthermore, since the final diagonal consists of the determi-
nants of the principal minors of increasing dimension, positive or negative (semi-) den-
niteness can also be detected simply and automatically.

Rank determination. In the absence of a zero pivot, again there is nothing further
to be done. In the event of such a zero, then interchanging the pivot row with any lower
row with a nonzero entry in the pivot column will allow the fraction-free algonthm to
proceed. Simplv counting the number of nonzero entries on the diagonal gives the rank,
as before. This simple interchange is not necessarily the optimal pivoting strategy for

integer computation. , , ,
In the event of a rank-deficient matrix, obtaining the solution space for an unde-

termined system can be accomplished by modifying the back substitution algonthm in
just the same way as for real-number computation.

Pivoting. Clearlv in t he event of a zero pivot some pivoting is necessary in any good
implementation of GE. The question is what is the right strategy for integer computing?
Choosing the largest element in the floating-point algorithm has the virtue of keeping all
multipliers small and therefore restricting the growth of the matrix elements. However

that restricted growth is only realized because of the divjsions. ^Sflr;iv
At least intuitively, choosing the largest element in the pivot column is not nece.sar.lj

good for integer computation. Indeed a large prime pivot is probably neai-wors; since
that appears to almost guarantee rapid growth in the dynamic range. In (4) and then (o)

NAWCADPAX--96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 15

we see that each $> has the factor a„ and each further stage has this factor and then

has it repeated in the factors b™ The earlier a particular .^^J^ ^
impact it has on subsequent range growth. This is made plain in equation (6).
Tn the fraction-free version Algorithm 6, however, the range growth is essen^y in-

dependent of the order;f the ; of the^ ^JZ^<*~£

t^t^ZZ mv^nt up^t« under row —ges^ows
Z the simplest pivoting strategy is probably the best for this algorithm. That is at
stage fwe should use the first row for which the pivot column entry is nonzero: choose

Pit' It I cobble ^different ordering may represent some minor improvement on
this F^r Ixampk looking for pivots which are either powers of the binary (or other «»n-
SLSJ^uTnJL subsequent divisions particularly simple However, searching
for the appropriate Pivot element in this regard would (almost surely) be more wasteful

than beneficial.

5 COMPLEXITY OF THE FRACTION-FREE ALGORITHM

In this section we begin by obtaining the basic integer operation counts for the fraction-
^ GE A goHthm 6 There are two essential differences between these counts and those
o'he floa?ing-Point algorithms: the fundamental elimination loops contain no divisions

but have twice as many multiplications, and there is the additional complexity-ofthe
removal of the common factors after the first two stages so that divisions occur at a

SliS
TtLTdiS'multiplications in the elimination are easily counted. The comrnon

factor removal entails only divisions. The total number of these can be assessed from the
ZP control limits. For each i > 2, there is one division in the J- loop ^«^^
are solving a svstem) which runs from j = t +1 to n. Also in this loop is the A-loop v, hich
E. the same iimits and contains another division. The total division count is therefore

n-l n"2 1
T(n - i)(n - i + 1) = £ J(Z + 1) = 3«(« " D(» " 2)
i=2 '-»

The total operation counts are summarized in Table 4.

TABLE 4 Integer arithmetic operation counts for the fraction-free GE Algorithm 6 for

solution of an n x n linear system Ax = b.

Operation Matrix Factorization Right-hand side TOTAL' Z

Vo7= W-l) i*(n-l) {"»- J" + ?
Z. ln(n*-l) n(n-l) jn(n-l)(2n + o)
/ !(r/-2)(n-lU2n-3) l{n-\)(n-2) *n(n-l)(n-2)

Note that this operation count does not include the back substitution. What we see
mosUmportantly is'that the number of multiplication, ha. doubled an* eve» worse, the
number of divisions has increased by a complete order from 0(n) to 0{).

Unfortunately this is not the end of the story. The complexity of this «^ ^
further increased bv virtue of the fact that these integer divisions are typica v moie
d fficult than their floating-point counterparts - especially with the range^jtach
we have already seen can be substantial. This » likely to necessitate the use of long
integer arithmetic for which special algorithms must be used.

NAWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 16

5.1. Long integer arithmetic. Long integer arithmetic can be simulated using mul-

tiple words of some basic wordlength.
For example, if the underlying integer wordlength is 8 bits (or 1 byte) then such an

integer can be regarded as a radix 2« = 256 digit. Convent!0nally the range of values of the
£i 256 digits would be -128, -127,..., 127 «, that signed integers can be represented
FTsimplicitv in the current description, we restrict our attention to nonnegative integere
w!th a digit range of 0,1,..., 255. Very large integers could then be stored using a vector

of such integers using conventional place value. ,
In general, suppose the base wordlength.is L bits so that the effective rad* s A- 2

The vector {<k>, *,..., dK-1) would then be used to represent the integer Ne[0,R - 1J

giVeilby iV = dK-.ÄK-1+dA--aÄK-a + - + ^ + do (9)

where each digit satisfies 0 < rf, < R. For efficient arithmetic using such a representa-
tion we require an integer accumulator with 21 bits. Among other consequences of tins
are that addition can be computed in "digit-parallel" with subsequent attention to any
carries which may be propagated. A large radix carry lookahead or conditional sum adder
"uld be constructed to improve the efficiency of addition. These add-on algorithm, are
simple generalizations of the usual binary addition algorithms which are described, for

eXaMultipliit2iL of long integers can be achieved with reasonable efficiency using the
convolution form of the product working with the component words of the large integers.
A-ain for simplicitv. we shall only consider multiplication of positive integers. The mul-
tiplication of two integers in the form (9) will result in an integer whose representation

requires at most 2K X-bit words.
Suppose that we require the product of the long integers

K-i K^i

t=0 i=0

This product is given by

>K-\

m -KlH(§vrlT§aA-'r <10)

»here we use the convention ft = 0 if, < 0. This is essentially a convolution product of

^eaca'c^ient product oA_, « be view«, as . base-* «* which w=
t r ,3 — -, p _u f,, w\\pre each -vt, and Ok i is a base-rc digit, inus write in the form a,&-, = Ik.i"- + «*.. ^nere eacn -yk,, <"'" ^ ° ™™1iir.

-.M is the most significant and 6k<i the least significant Ä-digit of a^k-i- The p.oduct

(10) can therefore be written as

m»«= > i > 7li/iT*..,|«- •.!• ,V*-i.<+ 6*.<1Ä' (U)

A-=0 \i=0 /

where -lk,i = <$/.-,. = 0 for '• > A'-

Remark 2. Carries beyond the R2K~l position are not possible sinoe m*n < (Rh-I)2 <

NAWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 17

Remark 3. The results of the inner sums in (11) will usually create further carries which
must be accounted for. However, we note that for almost any minimal degree of parallelism
in the processor, each of these inner sums can be performed simultaneously since they
consist of at most IK terms each less than R and we would expect IK « R Therefore the
sum wiü be less than R2 so that it wiU be representable in a double length accumulator.

For the 8-bit basic wordlength the restriction is only that our integers do not exceed
MS}256 _ 22048 > 10616 which is well beyond any typical integer computing range for

linear algebra problems.
The length of the inner sums in (11) will also restrict the size of any carry and therefore

may be useful in bounding the range of the propagation of such cames. Tins could be
used to improve the efficiency of such a convolution product. We do not consider such

details further in this report.
What effect does such a long multiplication have on the arithmetic complexity of

an integer algorithm? The product formula (10) entails K2 basic multiplications. These
components must then be broken into their two component digits and then approximately
K2 additions together with the carries these generate. In Table 4, this means that each
of the (approximately) §n3 multiplications entails something like 2K2 regular integer
arithmetic operations. For even quite moderate range growth with K = 4 this has the
effect of increasing this part of the complexity by a factor of 32.

We conclude this section with a brief comment on the impact of parallelism on per-
forming Gauss elimination using integer computation and on the long integer arithmetic
required for the growth in the dvnamic range. An array processor could be used to ac-
celerate this algorithm greatly. Firstly, all the coefficient products in the inner sum in
(10) can be computed simultaneously. The realignment of the upper and lower halves of
these products needed for the inner summation in (11) is then a simple shift of data to a
neighboring processor and these sums could then also be performed simultaneously. The
final carries would be the onlv part that requires serial processing.

Division of long integers can also be achieved by generalizing some of the standard
algorithms which are used in binary integer hardware such as the SRT division algorithm
which is based on the idea of nonrestoring division. This algorithm is well-suited to
high-radix division and so can be modified to the long integer framework. The SRT
algorithm relies on repeated addition and subtraction using signed digits. Since we have
onlv dealt with arithmetic of nonnegative long integers here, we do not discuss the detailed
implementation further. For details of the basic algorithm and its implementation at least

for radix 4, see [12].

5.2. Computing with the rationals. In this section,we consider the use of Gauss
elimination in the setting of rational arithmetic. Of course in some sense, floating-point w
rational arithmetic but it uses a very special subset of the rationals and does not comply
with the axioms of conventional rational arithmetic. We are concerned here with matrices
with entries in the field Q of rational numbers. The arithmetic operations will be similar
in nature to those of Algorithm 15 for back substitution in the integer GE solution of a

linear svstem.
There are choices to be made over the way in which rational numbers are to be stored

and manipulated within the computer. The conceptually simplest option is simply to store
q £ Q as a pair of integers representing its numerator and (positive) denominator in its
maximally reduced form. Alternatives that have been extensively researched include the
use of continued fraction representations and, in particular, the lexicographic continued

NAWCADPAX--96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 18

fraction, or LCF. arithmetic of Kornerup and Matula [8]. We shall only consider here
the [n/m] form in which a rational number is represented as a quotient of two co-prime

integers n

"?= — m

where n m € Z have no common factors and m > 0. Arithmetic operations are then
defined according to the usual rules of rational arithmetic with reduction to this "normal-
ized" form after each arithmetic operation.

It is immediately apparent that many of the range growth problems which plague
integer GE will reappear here with comparable severity. Of course the divisions which are
inherent in the basic forms of GE and LU factorization can be performed here and restrict
the ran-e of values of the rational numbers being represented - but these divisions do not
necessarily reduce the range of integers needed for the numerators and denominators
separately The chief virtue that would be derived here is the elimination of any rounding
errors and therefore definitive answers to questions such as the rank of the matrix and
exact values for the determinant and for the solution vector of a linear system.

The algorithm for performing Gauss elimination with a rational matrix can be any
variant of Algorithm 1 with real arithmetic operations replaced by rational arithmetic.
There is no benefit in detailing this algorithm explicitly. A more detailed discussion in
terms of both complexity and the integer range growth for rational Gauss elimination is
included in [17]. In this section, we content ourselves with a summary of some relevant

results.

Complexity. The most obvious increase in complexity arises out of the mere fact
that it is performing rational arithmetic and so every arithmetic operation entails manip-
ulation of both the numerator and denominator. There is also the further complication
arisin- from the reduction of each ordered pair to represent an irreducible fraction. This
require either that each integer is stored as a product of its prime factors, or more rea-
sonably that the Euclidean algorithm for finding the gcd of two integers is employed and
followed with two integer divisions. Because the Euclidean algorithm is iterative we can-
not determine the number of integer mod operations that are required. (Also any bounds
which could be derived would be hopelessly pessimistic.)

In Table 5 we list the numbers of conventional integer arithmetic operations together
with the number of gcd's that are needed. Typically we might expect that a gcd would
be equivalent to several integer divisions and that these divisions are. in turn, equivalent
to several multiplications. However it should also be noted that, because of the range
orowth, the multiplications may involve long wordlength integers. On the other hand
we mav expect the gcd to be much smaller so that the divisor wordlengths may be less
extreme. In the operation counts in Table 5, no attempt is made to account for dynamic
range considerations or the relative weights to be given to the different operations.

TABLE 5 Integer arithmetic operation counts for the rational GE for solution of an

n x n linear system Ax = b.

Operation Matrix Factorization Right-hand side TOTAL

Z 2n2(n-l) 3n(n-l) «(«-l)(2n + 3)

/ I'"!"2"1) 'i(?,_1) jn(«-l)(2n + 5)
gcd i»(" -l) 5 „2 _ 1 ±77(77 - 1) h (n-1) (2n +5)

NAWCADPAX--96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 19

Again the biggest single effect is that the number of divisions has increased to 0(n3)
in addition to the O (n3) gcd operations. This time the number of multiplications has

also increased by a substantial factor.

Growth in dynamic range. In attempting to analyse the potential growth in the
necessarv dvnamic range for rational GE; we cannot assume any useful reduction in the
rational quantities other than that which is a necessary consequence of the ehimnation
procedure itself. For simplicity in this setting, we make the assumption that the original
matrix A is in fact an integer matrix. This allows us to compare the results of the rational
algorithm with those that would be obtained using the divisionless integer algorithm. In
much the same wav as was described for the fraction-free Algorithm 6, this comparison
reveals certain common factors which will be removed by the various reduction steps.
This has the effect of reducing the potential range growth in a similar manner to that
which we observed in Algorithm 6. Indeed the dynamic range required for the rational
aloorithm turns out to be identical to that for Algorithm 6. Therefore if the initial matrix
is «i integer matrix, using rational arithmetic yields no benefit relative to the fraction-free
al-orithm. If the original matrix consists of rational entries, the range growth problem
becomes potentially even more critical since, the "cross-multiplications" needed for the
elimination do not appear to generate any obvious and general common factors.

5,3. General rings. Finally, we consider briefly the applicability (and application) of
GEin a more general algebraic setting. We are interested here in matrices with entries in
a general ring 11. There are at least two fundamental questions which arise immediately:

"When do the problems have solutions?" and
"When do the algorithms make sense?"
If Tl is a unique factorization domain (UFD) then the algorithms described earlier for

integer computation remain valid while any rational arithmetic algorithms have obvious
analogues in the field of fractions Q. For details of the definitions and properties of the
various algebraic structures see [4] or any standard text on abstract algebra. In particular
this means that the above algorithms have direct analogues for rings of polynomials over
R and C or their fields of fractions which consist of rational functions over these fields.
Some of the specific problems have solutions in slightly more general settings than just a
UFD However the fraction-free algorithms only make sense in a setting where removal of
common factors can be achieved. A unique factorization domain is an appropriate setting

for this. .
It is then the case that all the algorithms described earlier for the integer carry over

in the natural wav to such a ring: all "arithmetic" being replaced by its corresponding
ring operations with division being understood to mean removal of common factors. The
resulting algorithms would therefore be much like the integer algorithms in a setting where
integers are represented by a list of their prime factors. Removal of common factors would
then literallv mean their removal from the corresponding lists.

The most interesting settings for these more general algorithms would be the poly-
nomial rings R[x] and C [x] for which more complicated fraction-free GE algorithms are
built into Computer Algebra Systems such as Maple. The similarity of the algorithms to
those for the integers are so great that they are not detailed separately here.

6. CONCLUSIONS

In this paper we have presented a simplified form of Gauss elimination for fraction-free
integer computation. This algorithm has several important advantages over conventional

NAWCADPAX-96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 20

approaches:
It requires no searching for common factors - The factors which are removed are

entirely predictable in the light of comparison between integer GE and its standard real

arithmetic counterpart.
The dynamic range growth problem is substantially alleviated by the removal of these

known factors.
The diagonal of the final upper triangular matrix consists of the determinants of the

principal minors of the original matrix. This has the benefit of making positive definiteness
(as well as the determinant) easily identifiable.

The range growth that is needed is no worse than that which is inherent in the original
matrix in the sense that determinants of all its principal minors will inevitably need to

be representable.
The algorithm generalizes in a completely obvious way to more general Unique Fac-

torization Domains — including rings of real or complex polynomials for example.

Acknowledgements This work was supported by grants from the Office of Naval Re-
search through the Naval Air Warfare Center, Aircraft Division, Warminster, PA
and the Naval Academy Research Council. The author is also grateful to Bob
Williams and Ron Gleeson for several useful discussions related to this work at
NAWC, Warminster.

REFERENCES

[lj H.Anton. Linear Algebra 4th Ed. Wiley, New York, 1984

[2] N.R.Blachman and M.J.Mossinghoff, Maple V Quick Reference, Brooks/ Cole, Pacific
Grove, CA. 1994

[3] J.L.Buchanan and P.R.Turner, Numerical Methods and Analysis, McGraw-Hill, New

York. 1992

[4] D.S.Dummit and R.M.Foote, Abstract Algebra, Prentice-Hall, 1991

[5] G.H.Golub and C.F.van Loan, Matrix Computations 2nd Ed, Johns Hopkins Press,

Baltimore, 1989

[6] B.J.Kirsch and P.R.Turner, Adaptive beamforming using RNS arithmetic, Proc
ARITH11, IEEE Computer Society. Washington, DC, 1993, pp36-43

[7] B.J.Kirsch and P.R.Turner, Modified Gauss elimination for adaptive beamforming
using complex RNS arithmetic, Naval Air Warfare Center, Warminster Report NAW-
CADWAR 94112-50, 1995

[8] P.Kornerup and D.W.Matula, .4?» on-line arithmetic for bit-pipelined rational arith-
metic. J Parallel and Dist Comp 5 (1989) 310-330

[9] The MathWorks, Inc., The Student Edition of MATLAB Version |. User's guide,
Prentice-Hall. Englewood Cliffs. NJ. 1995

N AWCADPAX--96-196-TR

A SIMPLIFIED FRACTION-FREE INTEGER GAUSS ELIMINATION ALGORITHM 21

[10] J.J.Modi, Parallel Algorithms and Matrix Computations, Oxford University Press,

Oxford, 1988

[11] J.M.Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum,

New York, 1988

[12] N.R.Scott, Computer Number Systems and Arithmetic, Prentice-Hall, 1985

[13] M.A.Soderstrand, W.K.Jenkins, G.A.Jullien and F.J.Taylor, Residue Number System
Arithmetic: Modern applications in digital signal processing. IEEE, New York, 1986

[14] PH.Sterbenz, Floating-point computation, Prentice-Hall. 1974

[15] N.Szabo and R.Tanaka, Residue Arithmetic and Us Application to Computer Tech-
nology, McGraw-Hill, 1967

[16] P.R.Turner and B.J.Kirsch, Operation complexity for integer or RNS Gaussian elim-
ination, Report NAWCADWAR - 95004-4.5, 1995

[17] PR.Turner, Gauss elimination: Workhorse of linear algebra, NAWC-AD Tech Rep
1996

[18] P.R.Turner, Low rank determination using least squares, NAWC-AD Tech Rep 1996

[19] J.H.Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford,
1965

[20] S.Wolfram, MaViematica 2nd Ed, Addison-Wesley, New York, 1991

Distribution List
Report No. NAWCADPAX- -96 - 196 - TR

No. of Copies

Office of Naval Research 2

800 N. Quincy St.
Arlington, VA 22217
Marine Corps Research Center
2040 Broadway Street
Quantico, VA 22134-5107

Marine Corps University Libraries 2

Naval Air Systems Command
Air-5002
Washington, DC 20641-5004

Technical Information t Reference Center 2
Naval Air Warfare Center. Aircraft Division
Building 407
Patuxent River, MD 20670-5407

Naval Air Station Central Library 2
Naval Air Systems Command (NAVAIR)
Jefferson Plaza Bldg 1., 1421 Jefferson Davis Hwy
Arlington, VA 2243-5120

Director Science &: Technology (4.0T) 2
Naval Sea Systems Command
2531 Jefferson Davis Hwy
Arlington, VA 22242-5100

Technical Library, (SEA0ITD2L) 2
Defense Technical Information Center
Cameron Station BG5
Alexandria, VA 22304-6145

DTIC-FDAB 2

U.S. Naval Academy
Annapolis, MD 21402-5029

Peter R. Turner (Mathematics Department) 10
Dr. Richard Werking (Nimitz Library) 2

Naval Air Warfare Center
Weapons Division
China Lake, CA 93555-6001

Head Research k Tech. Div. (NAWCWPNS-474000D) 2
Computational Sciences (N AWCWPNS-474400D) 2
Mary-Deirdre Coraggio (Library Division. C643) 2

Distribution List, cont.

Report No. NAWCADPAX- -96- 196 - TR

No. of Copies

Naval Postgraduate School
Monterey, CA 93943-5002

Dudley Knox Library 2
Naval Research Laboratory(NRL)
4555 Overlook Ave, SW
Washington, DC 20375-5000

Center for Computational Science (NRL-5590) 2
Superint., Lab. for Comput. Phy & Fluid Dynamics
(NRL-6400) 2
Ruth H. Hooker Research Library (5220) 2

Naval Command, Control k Ocean Surveillance Center
200 Catalina Blvd
San Diego, CA 92M 7-5042

Technical Library (NRA D-027 I) 2
Signals Warfare Div (NRAD-77) 2
Analysis & Simulation Div. (NRAD-78) 2
Director of Navigation fc Air C3 Dcpt. (NCCOSC-30) .. 2

Naval Air Warfare Center
Aircraft Division Warminster
Warminster, PA 18974-0591

Warfare Planning Systems (4.5.2.1.00R07) 2
Tactical Inf. Systems (4.5.2.2.00R07) 2
Mission Comp. Processors (4.5.5.1.00R07) 2
Dr. Robert M. Williams (4.5.5.1.00R07) 20
Acoustic Sensors (4.5.5.4.00R07) 2
RF Sensors (4.5.5.5.00R07) 2
EO Sensors (4.5.5.6.00R07) 2
Inductive Analysis Branch (4.10.2.00R86) 2
TACAIR Analysis Division (4.10.1.00R86) 2
Operations Research Analysis Branch (4.10.1.00R86) 2
Advanced Concepts Branch (4.10.3.00R86) 2
Nav. Aval. Sys. Dew Division (3.1.0.9) 2
Anthony Passamante (4.5.5.3.4.00R07) 2
Elect. Systems BR (4.8.2.2.00K0N) 2
Dr. Richard Llorens (-1.3.2.1.00R0X) • 2
Advanced Processors (4.5.5.1.00R.07) 2
Mission & Sensors Integrations (4.5.5.3.000R07) 2
Applied Signal Process BR (-1.5.0.3,1.001107) 2

